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High-order discretization schemes for biochemical applications
of boundary element solvation and variational electrostatic
projection methods
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A series of high-order surface element discretization schemes for variational boundary element
methods are introduced. The surface elements are chosen in accord with angular quadrature rules for
integration of spherical harmonics. Surface element interactions are modeled by Coulomb integrals
between spherical Gaussian functions with exponents chosen to reproduce the exact variational
energy and Gauss'’s law for a point charge in a spherical cavity. The present work allows high-order
surface element expansions to be made for variational methods such as the conductorlike screening
model for solvation and the variational electrostatic projection method for generalized solvent
boundary potentials in molecular simulations.2805 American Institute of Physics
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Two methods that have an important role in the arsenaharmonic functiong. These rules are ideally suited for the
of “multiscale” modeling techniques used to calculate thesmooth COSMO and VEP methods that may use constraints
reactions of biomolecules are the smooth conductorlikeon high-order multipole moments in the variational proce-
screening modél (COSMO and the recently introduced dure.
variational electrostatic projectiofVEP) method® The The set of N angular quadrature point§f, ¢} and
smooth COSMO model is based on a conductor variationalveights{w;} (normalized to 4), for i=1,...,N, for a par-
principle originally proposed by Klamt and Schutirmann, ticular order are determined to satisfy the integral relation
but differs from their original method in that the surface
elements are modeled by the Gaussian functions that can be

27 1 N
smoothly switched off or on as they become buried or ex- JO d‘bf_l d(cos6)f(6, ) =§lwif(0i'¢i)' @)
posed with changes in the molecular geometry. The smooth

COSMO method has recently been extended to electronighere the functiorf(, ¢) can be represented in a basis of
structure and hybrld quantum mechanical/molecular mespherica| harmonic functions up to a fixed ordeas

chanical (QM/MM) methodd and applied to phosphoryl
transfer reactions in solutichThe VEP method has been
used to model the macromolecular electrostatic environment  (6,8) = > > CinYim(6, ), (2
in stochastic boundary molecular-dynamics simulations. 1=0 m=-

The smooth COSMO and VEP methods are Va”at'o_na{/vhereY, m(0, @) is a spherical harmonic function ai@,, is
boundary elementechniques that use discretized Gaussial he corrésponding expansion coefficient ’

surface elements that require specification of surface element Two types of angular quadrature rdieare considered:
positionand properly calibrated Gaussian exponents to pro-(l) a Gauss—Legendre product af®l a Lebedev grid. The
vide the correct variational response. In the present work, ©auss—Legendre product formula requires1 equally
prescription for the determination of the discretized sun‘aceS aced points and uniform weights i, and (L+1)/2
elements and their Gaussian exponents is derived based uss—Legendfequadrature points and ’weights in oS
numerical quadrature rules for the integration of sphericalic \cads to a set ONg, =(L+1)2/2 angular quadrature
harmonics. The data and relations presented here provide @ . 4 - gives exact integration up to ordeon the unit

conxenlent meﬁr?g;r,\rﬂwowhe(rje\?é;)oundsry elemotlandt metho here. A more efficient set of angular quadrature for spheri-
such as smoot an can be extended to a Ve[, harmonic functions, first pioneered by Lebe@&¥in-

high order.

L 1

volves formulas for specific points and weights determined

algebraically. These angular quadrature grids were later

ANGULAR QUADRATURE RULES extended** and recently to a very high order by Lebedev

and Laikov*® For the Lebedev grid methods, the number of

The surface discretization procedures used in the presegf,adrature points required to satisfy exact integral relations

work are based on angular quadrature fllies spherical up to orderl is approximatelyN, o, ~ (L+1)2/3, resulting in

a computational cost reduction of about 33% relative to the

dElectronic mail: york@chem.umn.edu Gauss—Legendre.
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DISCRETIZED SURFACE ELEMENTS TABLE |. Optimized scale factor for the Gaussian exponents for Gauss—

Legendre product quadrature rules.

The discretized surfacébenceforth be designated by

used in the smooth COSM@ef. 1) and VEP(Ref. 2 meth- N, Order ¢ % oy
ods are based on discretized unit spheres that can then be g 3 4.814 222 866 57 55608 7 E-09
dilated using exact scaling relations, translated, and as- 1g 5 4.803 553 176 23 1E4-02 7 E-04
sembled. The surface elements are represented by smoothzy 7 4.789 291 822 20 202 7.E-04
Gaussian functions of the form 50 9 4.780 461 940 39 26-02 5.£-04
o\ 3/2 72 11 4.774 419394 71 602 3.&-04
gi(r)= (—') e - 3) 98 13 476987757037  EA02  2.7E-04
T 128 15 4.766 273 396 59 E302 1.E-04
) . . ) 162 17 4.763 310340 85 EL02 1.£E6-04
wherer; is the position of théth surface element ang is 200 19 4.760 811 640 22 602 1 E-04
the Gaussian exponent. The electrostatic interaction between,,, 21 4.758 664 343 29 E802 8. E-05
surface elementsandj are modeled by the Coulomb inte-  2gg 23 4.756 792 421 21 E702 6.-05
grals 338 25 4.755 142 294 20 E6-02 5.F-05
392 27 4.753 674 654 48 E502 4.E-05
3 _f f MJ(_ds a3 = M 4) 450 29 475235067933  E402  3.4£-05
ij 512 31 4.751174 118 75 E302 2.&-05
578 33 4.750 099 448 40 E302 2.£-05
where £; = GG+, ry=Iri-r)|, and erfx) is the error 648 35 474912064899  E202  2.E-05
function.” The surface element self-lnteractlon is determined 722 37 4.748 225 368 75 EL02 1L.E-05
in the limit that{;=¢; andr; — 0, and is given by 800 39 4.747 403 329 38 EX02 1.E-05
, 882 41 4.746 645 892 70 E6-02 1.F-05
Ji= f f GG 53 = \/E e (5) 968 43 474594573694 €903  1.E-05
[r=r’| T 1058 45 474529661002 €603  9.E-06
) ) ) 1152 47 4.744 693 138 24 €203 8.&-06
and the interaction of the Gaussian surface elements at ;.5 49 4.744 130 675 76 &903 7 E-06
with a unit point charge aR; can be calculated from E¢) 1352 51 4.743 605 184 77 €503 7.E-06
in the limit that{; —c° to give 1458 53 474311313892 €303  6.E-06
1568 55 4.742 651 444 83 £603 5.6-06
B = f J Mﬁ(ﬁ d3’ = M (6) 1682 57 4.742 217 377 74 E#03 5.E-06
Ir=r’| i - Ryl 1800 59 474180852838  E503  4.6E-06
. . 1922 61 4.741 422 758 78 E303 4.E-06
The matrix elements of Eq§4)—(6) correspond _to the _matrlx 2048 63 4.741 058 165 25 103 3 E-06
elements of Eqgs(66), (67), and (72), respectively, in the 2178 65 4740 713 047 36 €903 3E-06
smooth COSMO methotland Eqgs.(9) and (12), and (13) 2312 67 4.740 385 881 61 €703 3.E-06
respectively, in the VEP methdd. 2450 69 474007529910  &503  2.F-06
These Gaussian exponents, satisfy a simple relation 2592 71 4.739 780 066 50 &3 03 2.E-06
with the angular quadrature weighis on the unit sphere: 2738 73 4.739 499 069 75 &2 03 2.E-06
— 2888 75 4.739 231 300 02 &6 03 2.E-06
Gi=dw, (7 3042 77 473897584158  E903 2. E-06
where( is a scale factor chosen for each quadrature rule to 3200 9 473873186140 &703 2.E-06
reproduce the variational energy and the Gauss’s law sun‘ace3362 81 4.738 498 599 98 £603 1.8-06
. ) 3528 83 4.738 275 363 45 £503 1.E-06
charge for a point charg® at the center of a unit sphef&g. 3698 85 4.738 061 516 64 £303 LE—06
(7) is appropriate for rules whera; >0 Oi]. The relation 3872 87 4.737 856 477 01 £203 LE-06
between the surface element and the Gaussian expﬁﬁent 4050 89 4.737 659 709 29 %103 1.£-06
(7)] results in a nearly uniform variational surface charge 4232 91 4.737 470 720 83 £603 1.E-06
distribution v 4418 93 4.737 289 057 39 £903 1.E-06
_ 4608 95 4.737 114 299 49 £803 1.E-06
%= Qwi/4m. (8) 4802 97 4.736 946 059 16 £703 1.EE-06
99 4.736 783 976 99 £603 1.(E-06

For spheres of different radir, the discretization points, 5000

weights, and the Gaussian exponents obey the exact scaling
relations

tors ¢ for a wide range of high-order quadrature rules such

G(R) = §i/IR=IIWwi(R), (99  that they can be used to generate systematic sets of dis-
cretized y surfaces for smooth COSMO, VEP, and other

ri(R) =rR, (10 boundary-element methods.

w;(R) :WiRz, (11) SCALE FACTORS FOR GAUSSIAN EXPONENTS

wherer;, w;, and{; correspond to the discretized unit sphere.  Tables | and 1l list the optimized values of the scale
The purpose of the present work is to present the scale fadactors,{ of Eq. (7), for each discretization level, along with
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TABLE II. Optimized scale factor for Gaussian exponents for the Lebedev 4-92_ — T T T T T T T T T T )
quadrature grids with octahedral symmetry. Grids of order 13, 25, and 27 490 x < hd .
(N, =74, 230, and 266 points, respectivelyere neglected due to negative F . 1
qugdrature weights that are not appropriate for use in(Bq. u4.88 B N Lebedevgrid 3 :gﬁﬁ ::?g §
4.861- ]
N, Order ¢ o o, s84l* ]
6 3 4.845 660 778 68 2206 3.6E-07 agf——+—+——F—+——+—F—+—F—+—F——F—
14 5 486458714334  9D-04  6.E-05 480 ]
26 7 4.854 782 262 19 65-03 2.E-04 478E T
38 9 4.901 058 126 85 168-02 4.E-04 o Ok Gauss-Legendre product 1
50 11 4.89250673295  FB-03 7.&E-05 4761 ]
86 15 4.897 413 725 80 IE3-03 1.-05 474 000 s
110 17 4.901 010 609 87 F+03 4. FE-05 g7ob— L 1.0 ) ]
146 19 4.898 251 873 92 E402 9.€-05 ¢ v 20 30 4 S 6 70 &
170 21 4.906 855 177 25 E203 7.FE-06 Ny
194 23 4.903 376 442 48 F603 1.E-05
302 29 4.904 980 881 69 F203 1. FE-05 FIG. 1. Optimized scale factors for the surface element Gaussian exponents
350 31 4.868 794 748 32 E302 9.£-05 derived _from the Gauss—Leg_endre and Lebedev quadrature formulas. The
434 35 4.905 673 490 80 303 5E-06 black diamonds are the optimal zeta_values calculated for the_Gauss—
Legendre surface elements. The black circles:argymbols are the optimal
590 41 4.906 240 713 59 £6-03 3.£-06 zeta values calculated for the Lebedev grids of ordegiven by L=6m
770 47 4.906 564 357 79 E503 2.EE-06 +5,{m=0,1,...,218} andL=2m+1,{m=1,2,...,15}, respectively. The lat-
974 53 4.906 851 679 98 E303 1.£-06 ter did not fit to the empirical relation of Eq12) used to produce the
1202 59 4.907 040 982 16 E603 8.FE-07 trendlines. The values for the parameters in @@) for the Gauss—Legendre
1454 65 4.907 210 238 69 E604 6.E-07 surface elements aren=3,cy=4.7238274¢,=0.219217 30, andc,
w0 asmamueor T 4wy SOAROING Thecoreondng e o e L ebedes uace lmens
2030 77 4.907 444 991 42 E204 3.E-07 o e P :
2354 83 4.907 530 828 25 804 2.%E-07
2702 89 4.907 609 727 66 604 2.E-07 the Gauss—Legendre and Lebedev surface elements as a
3074 95 490767282394  £604 1LE-07 function of N*? are shown in Fig. 1. Although the fit to Eq.
3470 101 490773141371 £404 1.E-07 (12) is very good, it is recommended that the scale factors
3890 107 490777965981 EZ04  9.F-08 from Tables | and Il be used for quantitative work.
4334 113 490782469526 604 8.5-08 The present work offers a prescription for the generation
gggi Eg 2:28; 22(1) ?gi 22 iggj ;:i:g; of discretized surface elements for variational boundary ele-
5810 131 4.907 929 025 22 £604 4.6E-08 ment methods such as smooth COSMO and VEP that are

important for modeling reactions of biomolecules with mul-
tiscale models. Extension to high-order discretization allows
the accuracy of the methods to be systematically improved,
the convergence properties to be characterized, and the
benchmark quality calculations to be performed.

the root-mean-squar@ms) error [o,=((y*¥°~y)?*?] in the
variational y surface charge distributiofEg. (8)], and the
relative rms erro(orye':ay/(f)l’z). All of the surface ele-
ment discretization schemes beyond eight points give nu-
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