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A series of high-order surface element discretization schemes for variational boundary element
methods are introduced. The surface elements are chosen in accord with angular quadrature rules for
integration of spherical harmonics. Surface element interactions are modeled by Coulomb integrals
between spherical Gaussian functions with exponents chosen to reproduce the exact variational
energy and Gauss’s law for a point charge in a spherical cavity. The present work allows high-order
surface element expansions to be made for variational methods such as the conductorlike screening
model for solvation and the variational electrostatic projection method for generalized solvent
boundary potentials in molecular simulations. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1899146g

Two methods that have an important role in the arsenal
of “multiscale” modeling techniques used to calculate the
reactions of biomolecules are the smooth conductorlike
screening model1 sCOSMOd and the recently introduced
variational electrostatic projectionsVEPd method.2 The
smooth COSMO model is based on a conductor variational
principle originally proposed by Klamt and Schüürmann,3

but differs from their original method in that the surface
elements are modeled by the Gaussian functions that can be
smoothly switched off or on as they become buried or ex-
posed with changes in the molecular geometry. The smooth
COSMO method has recently been extended to electronic
structure and hybrid quantum mechanical/molecular me-
chanical sQM/MM d methods4 and applied to phosphoryl
transfer reactions in solution.5 The VEP method2 has been
used to model the macromolecular electrostatic environment
in stochastic boundary molecular-dynamics simulations.

The smooth COSMO and VEP methods are variational
boundary elementtechniques that use discretized Gaussian
surface elements that require specification of surface element
positionand properly calibrated Gaussian exponents to pro-
vide the correct variational response. In the present work, a
prescription for the determination of the discretized surface
elements and their Gaussian exponents is derived based on
numerical quadrature rules for the integration of spherical
harmonics. The data and relations presented here provide a
convenient mechanism whereby boundary element methods
such as smooth COSMO and VEP can be extended to a very
high order.

ANGULAR QUADRATURE RULES

The surface discretization procedures used in the present
work are based on angular quadrature rules6 for spherical

harmonic functions.7 These rules are ideally suited for the
smooth COSMO and VEP methods that may use constraints
on high-order multipole moments in the variational proce-
dure.

The set of N angular quadrature pointshui ,fij and
weights hwij snormalized to 4pd, for i =1,… ,N, for a par-
ticular order are determined to satisfy the integral relation

E
0

2p

dfE
−1

1

dscosudfsu,fd = o
i=1

N

wi fsui,fid, s1d

where the functionfsu ,fd can be represented in a basis of
spherical harmonic functions up to a fixed orderL as

fsu,fd = o
l=0

L

o
m=−l

l

Cl,mYl,msu,fd, s2d

whereYl,msu ,fd is a spherical harmonic function andCl,m is
the corresponding expansion coefficient.

Two types of angular quadrature rules6 are considered:
s1d a Gauss–Legendre product ands2d a Lebedev grid. The
Gauss–Legendre product formula requiresL+1 equally
spaced points and uniform weights inf, and sL+1d /2
Gauss–Legendre8 quadrature points and weights in cosu.
This leads to a set ofNGL=sL+1d2/2 angular quadrature
points that gives exact integration up to orderL on the unit
sphere. A more efficient set of angular quadrature for spheri-
cal harmonic functions, first pioneered by Lebedev,9,10 in-
volves formulas for specific points and weights determined
algebraically. These angular quadrature grids were later
extended11,12 and recently to a very high order by Lebedev
and Laikov.13 For the Lebedev grid methods, the number of
quadrature points required to satisfy exact integral relations
up to orderL is approximatelyNLeb<sL+1d2/3, resulting in
a computational cost reduction of about 33% relative to the
Gauss–Legendre.adElectronic mail: york@chem.umn.edu
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DISCRETIZED SURFACE ELEMENTS

The discretized surfacesshenceforth be designated bygd
used in the smooth COSMOsRef. 1d and VEPsRef. 2d meth-
ods are based on discretized unit spheres that can then be
dilated using exact scaling relations, translated, and as-
sembled. The surface elements are represented by smooth
Gaussian functions of the form

gisr d = S zi
2

p
D3/2

e−zi
2ur − r iu

2
, s3d

wherer i is the position of theith surface element andzi is
the Gaussian exponent. The electrostatic interaction between
surface elementsi and j are modeled by the Coulomb inte-
grals

Jij =E E gisr dgjsr 8d
ur − r 8u

d3rd3r8 =
erfszi j r i jd

r ij
, s4d

where zi j =ziz j /Îzi
2+z j

2, r ij = ur i −r ju, and erfsxd is the error
function.7 The surface element self-interaction is determined
in the limit thatzi =z j and r ij →0, and is given by

Jii =E E gisr dgisr 8d
ur − r 8u

d3rd3r8 =Î 2

p
zi s5d

and the interaction of the Gaussian surface elements atr i

with a unit point charge atR j can be calculated from Eq.s4d
in the limit thatz j →` to give

Bij =E E gisr ddsr 8 − R jd
ur − r 8u

d3rd3r8 =
erfsziur i − R jud

ur i − R ju
. s6d

The matrix elements of Eqs.s4d–s6d correspond to the matrix
elements of Eqs.s66d, s67d, and s72d, respectively, in the
smooth COSMO method,1 and Eqs.s9d and s12d, and s13d
respectively, in the VEP method.2

These Gaussian exponents,zi, satisfy a simple relation
with the angular quadrature weightswi on the unit sphere:

zi = z/Îwi , s7d

wherez is a scale factor chosen for each quadrature rule to
reproduce the variational energy and the Gauss’s law surface
charge for a point chargeQ at the center of a unit spherefEq.
s7d is appropriate for rules wherewi .0 ∀ ig. The relation
between the surface element and the Gaussian exponentfEq.
s7dg results in a nearly uniform variational surface charge
distributiongi

gi = Qwi/4p. s8d

For spheres of different radiiR, the discretization points,
weights, and the Gaussian exponents obey the exact scaling
relations

zisRd = zi/R= z/ÎwisRd, s9d

r isRd = r iR, s10d

wisRd = wiR
2, s11d

wherer i , wi, andzi correspond to the discretized unit sphere.
The purpose of the present work is to present the scale fac-

tors z for a wide range of high-order quadrature rules such
that they can be used to generate systematic sets of dis-
cretized g surfaces for smooth COSMO, VEP, and other
boundary-element methods.

SCALE FACTORS FOR GAUSSIAN EXPONENTS

Tables I and II list the optimized values of the scale
factors,z of Eq. s7d, for each discretization level, along with

TABLE I. Optimized scale factor for the Gaussian exponents for Gauss–
Legendre product quadrature rules.

Ng Order z sg
rel sg

8 3 4.814 222 866 57 5.6E−08 7.0E−09
18 5 4.803 553 176 23 1.4E−02 7.8E−04
32 7 4.789 291 822 20 2.2E−02 7.3E−04
50 9 4.780 461 940 39 2.6E−02 5.4E−04
72 11 4.774 419 394 71 2.6E−02 3.8E−04
98 13 4.769 877 570 37 2.4E−02 2.7E−04
128 15 4.766 273 396 59 2.3E−02 1.9E−04
162 17 4.763 310 340 85 2.1E−02 1.4E−04
200 19 4.760 811 640 22 2.0E−02 1.1E−04
242 21 4.758 664 343 29 1.8E−02 8.1E−05
288 23 4.756 792 421 21 1.7E−02 6.4E−05
338 25 4.755 142 294 20 1.6E−02 5.1E−05
392 27 4.753 674 654 48 1.5E−02 4.1E−05
450 29 4.752 359 679 33 1.4E−02 3.4E−05
512 31 4.751 174 118 75 1.3E−02 2.8E−05
578 33 4.750 099 448 40 1.3E−02 2.4E−05
648 35 4.749 120 648 99 1.2E−02 2.0E−05
722 37 4.748 225 368 75 1.1E−02 1.7E−05
800 39 4.747 403 329 38 1.1E−02 1.5E−05
882 41 4.746 645 892 70 1.0E−02 1.3E−05
968 43 4.745 945 736 94 9.9E−03 1.1E−05
1058 45 4.745 296 610 02 9.6E−03 9.9E−06
1152 47 4.744 693 138 24 9.2E−03 8.8E−06
1250 49 4.744 130 675 76 8.9E−03 7.8E−06
1352 51 4.743 605 184 77 8.5E−03 7.0E−06
1458 53 4.743 113 138 92 8.3E−03 6.2E−06
1568 55 4.742 651 444 83 8.0E−03 5.6E−06
1682 57 4.742 217 377 74 7.7E−03 5.1E−06
1800 59 4.741 808 528 38 7.5E−03 4.6E−06
1922 61 4.741 422 758 78 7.3E−03 4.2E−06
2048 63 4.741 058 165 25 7.1E−03 3.8E−06
2178 65 4.740 713 047 36 6.9E−03 3.5E−06
2312 67 4.740 385 881 61 6.7E−03 3.2E−06
2450 69 4.740 075 299 10 6.5E−03 2.9E−06
2592 71 4.739 780 066 50 6.3E−03 2.7E−06
2738 73 4.739 499 069 75 6.2E−03 2.5E−06
2888 75 4.739 231 300 02 6.0E−03 2.3E−06
3042 77 4.738 975 841 58 5.9E−03 2.1E−06
3200 79 4.738 731 861 40 5.7E−03 2.0E−06
3362 81 4.738 498 599 98 5.6E−03 1.8E−06
3528 83 4.738 275 363 45 5.5E−03 1.7E−06
3698 85 4.738 061 516 64 5.3E−03 1.6E−06
3872 87 4.737 856 477 01 5.2E−03 1.5E−06
4050 89 4.737 659 709 29 5.1E−03 1.4E−06
4232 91 4.737 470 720 83 5.0E−03 1.3E−06
4418 93 4.737 289 057 39 4.9E−03 1.2E−06
4608 95 4.737 114 299 49 4.8E−03 1.2E−06
4802 97 4.736 946 059 16 4.7E−03 1.1E−06
5000 99 4.736 783 976 99 4.6E−03 1.0E−06

194110-2 B. A. Gregersen and D. York J. Chem. Phys. 122, 194110 ~2005!

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.12.88.212 On: Fri, 12 Sep 2014 18:16:22



the root-mean-squaresrmsd error fsg=ksgcalc−gd2l1/2g in the
variational g surface charge distributionfEq. s8dg, and the
relative rms errorssg

rel=sg / kg2l1/2d. All of the surface ele-
ment discretization schemes beyond eight points give nu-
merical values for the variational energy and Gauss’s law
surface charge to at least 12 significant figures. The surface
elements derived from all of the quadrature rules produce
nearly uniform variational surface charge distributions. The
sg values for the Gauss–Legendre surface elements fall be-
low 10−4 with 242 pointssorder 21d or greater and fall below
10−5 with 1058 pointssorder 45d or greater, reaching the
lowestsg value of 10−6 at 5000 pointssorder 99d. The Leb-
edev grids converge more quickly in terms of the integration
order and require less discretization points than the Gauss–
Legendre product rules. Thesg values for the Lebedev sur-
face elements fall below 10−4, 10−5, and 10−6 with 50, 434,
and 1202 points, respectively, corresponding to orders 11,
35, and 59, respectively. The lowestsg value of 4.6310−8

occurs at 5810 pointssorder 131d.
The scale factors,z, can be fit to the number of surface

elementsNg with the empirical equation

z = c0 + c1/sNg + c2d1/n, s12d

wherec0, c1, andc2 are unitless empirical parameters andn
is an integer. Plots of the Gaussian exponent scale factors for

the Gauss–Legendre and Lebedev surface elements as a
function of Ng

1/2 are shown in Fig. 1. Although the fit to Eq.
s12d is very good, it is recommended that the scale factors
from Tables I and II be used for quantitative work.

The present work offers a prescription for the generation
of discretized surface elements for variational boundary ele-
ment methods such as smooth COSMO and VEP that are
important for modeling reactions of biomolecules with mul-
tiscale models. Extension to high-order discretization allows
the accuracy of the methods to be systematically improved,
the convergence properties to be characterized, and the
benchmark quality calculations to be performed.
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